Highest vectors of representations (total 7) ; the vectors are over the primal subalgebra. | g4+g−3 | −h4+h3 | g3+g−4 | g9 | −g11+g5 | g8 | g1 |
weight | 0 | 0 | 0 | ω1 | ω1 | ω1 | 2ω2 |
weights rel. to Cartan of (centralizer+semisimple s.a.). | −4ψ | 0 | 4ψ | ω1−4ψ | ω1 | ω1+4ψ | 2ω2 |
Isotypical components + highest weight | V−4ψ → (0, 0, -4) | V0 → (0, 0, 0) | V4ψ → (0, 0, 4) | Vω1−4ψ → (1, 0, -4) | Vω1 → (1, 0, 0) | Vω1+4ψ → (1, 0, 4) | V2ω2 → (0, 2, 0) | |||||||||||||||||||||||||||||||||||
Module label | W1 | W2 | W3 | W4 | W5 | W6 | W7 | |||||||||||||||||||||||||||||||||||
Module elements (weight vectors). In blue - corresp. F element. In red -corresp. H element. |
| Cartan of centralizer component.
|
|
|
|
| Semisimple subalgebra component.
| |||||||||||||||||||||||||||||||||||
Weights of elements in fundamental coords w.r.t. Cartan of subalgebra in same order as above | 0 | 0 | 0 | ω1 −ω1+2ω2 0 ω1−2ω2 −ω1 | ω1 −ω1+2ω2 0 ω1−2ω2 −ω1 | ω1 −ω1+2ω2 0 ω1−2ω2 −ω1 | 2ω2 ω1 −ω1+2ω2 2ω1−2ω2 0 0 −2ω1+2ω2 ω1−2ω2 −ω1 −2ω2 | |||||||||||||||||||||||||||||||||||
Weights of elements in (fundamental coords w.r.t. Cartan of subalgebra) + Cartan centralizer | −4ψ | 0 | 4ψ | ω1−4ψ −ω1+2ω2−4ψ −4ψ ω1−2ω2−4ψ −ω1−4ψ | ω1 −ω1+2ω2 0 ω1−2ω2 −ω1 | ω1+4ψ −ω1+2ω2+4ψ 4ψ ω1−2ω2+4ψ −ω1+4ψ | 2ω2 ω1 −ω1+2ω2 2ω1−2ω2 0 0 −2ω1+2ω2 ω1−2ω2 −ω1 −2ω2 | |||||||||||||||||||||||||||||||||||
Single module character over Cartan of s.a.+ Cartan of centralizer of s.a. | M−4ψ | M0 | M4ψ | M−ω1+2ω2−4ψ⊕Mω1−4ψ⊕M−4ψ⊕M−ω1−4ψ⊕Mω1−2ω2−4ψ | M−ω1+2ω2⊕Mω1⊕M0⊕M−ω1⊕Mω1−2ω2 | M−ω1+2ω2+4ψ⊕Mω1+4ψ⊕M4ψ⊕M−ω1+4ψ⊕Mω1−2ω2+4ψ | M2ω2⊕M−ω1+2ω2⊕Mω1⊕M−2ω1+2ω2⊕2M0⊕M2ω1−2ω2⊕M−ω1⊕Mω1−2ω2⊕M−2ω2 | |||||||||||||||||||||||||||||||||||
Isotypic character | M−4ψ | M0 | M4ψ | M−ω1+2ω2−4ψ⊕Mω1−4ψ⊕M−4ψ⊕M−ω1−4ψ⊕Mω1−2ω2−4ψ | M−ω1+2ω2⊕Mω1⊕M0⊕M−ω1⊕Mω1−2ω2 | M−ω1+2ω2+4ψ⊕Mω1+4ψ⊕M4ψ⊕M−ω1+4ψ⊕Mω1−2ω2+4ψ | M2ω2⊕M−ω1+2ω2⊕Mω1⊕M−2ω1+2ω2⊕2M0⊕M2ω1−2ω2⊕M−ω1⊕Mω1−2ω2⊕M−2ω2 |